精英家教网 > 高中数学 > 题目详情
11.不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a(a>0)的解集是(  )
A.{x|0<x≤a}B.{x|x>0或x<-$\frac{4}{5}$a}
C.{x|-$\frac{a}{2}$<x<a}D.{x|-a≤x<-$\frac{4}{5}$a或0<x≤a}

分析 若不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a成立,则2x+a>0,且a2-x2≥0,进而利用平方法去除根号,可得答案.

解答 解:不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a可化为:a2-x2<4x2+4ax+a2
即5x2+4ax>0,(a>0)
解得:x>0或x<-$\frac{4}{5}$a,
又由2x+a>0,且a2-x2≥0得:$-\frac{1}{2}a$<x≤a.
综上可得:0<x≤a.
故不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a(a>0)的解集是{x|0<x≤a},
故选:A.

点评 本题考查的知识点是二次函数的图象和性质,其它不等式的解法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.化简:$\frac{cos(α-π)sin(π+α)tan(2π+α)}{sin(-π-α)sin(2π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为$\frac{1}{2}$的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设抛物线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数2与x的等比中项是±8,则x=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α、β∈(0,2π),且α与β关于x轴对称,则α+β=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求函数f(x)的解析式;
(3)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面积S.

查看答案和解析>>

同步练习册答案