精英家教网 > 高中数学 > 题目详情
2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为$\frac{1}{2}$的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳

分析 (Ⅰ)由题意可得a=2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b得答案;
(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB中点坐标,得到OM所在直线方程,再与椭圆方程联立,求出C,D的坐标,把︳MA︳•︳MB︳化为$\frac{1}{2}|AB{|}^{2}$,再由两点间的距离公式求得︳MC︳•︳MD︳的值得答案.

解答 (Ⅰ)解:如图,
由题意可得$\left\{\begin{array}{l}{a=2b}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\end{array}\right.$,解得a2=4,b2=1,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)证明:设AB所在直线方程为y=$\frac{1}{2}x+m$,
联立$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得x2+2mx+2m2-2=0.
∴△=4m2-4(2m2-2)=8-4m2>0,即$-\sqrt{2}<m<\sqrt{2}$.
设A(x1,y1),B(x2,y2),M(x0,y0),
则${x}_{1}+{x}_{2}=-2m,{x}_{1}{x}_{2}=2{m}^{2}-2$,
|AB|=$\sqrt{1+\frac{1}{4}}|{x}_{1}-{x}_{2}|=\sqrt{\frac{5}{4}}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{5}{4}}\sqrt{4{m}^{2}-4(2{m}^{2}-2)}=\sqrt{10-5{m}^{2}}$.
∴x0=-m,${y}_{0}=\frac{1}{2}{x}_{0}+m=\frac{m}{2}$,即M($-m,\frac{m}{2}$),
则OM所在直线方程为y=-$\frac{1}{2}x$,
联立$\left\{\begin{array}{l}{y=-\frac{1}{2}x}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\sqrt{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$.
∴C(-$\sqrt{2}$,$\frac{\sqrt{2}}{2}$),D($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$).
则︳MC︳•︳MD︳=$\sqrt{(-m+\sqrt{2})^{2}+(\frac{m}{2}-\frac{\sqrt{2}}{2})^{2}}$$•\sqrt{(-m-\sqrt{2})^{2}+(\frac{m}{2}+\frac{\sqrt{2}}{2})^{2}}$
=$\sqrt{(\frac{5}{4}{m}^{2}+\frac{5}{2}-\frac{5}{2}\sqrt{2}m)•(\frac{5}{4}{m}^{2}+\frac{5}{2}+\frac{5}{2}\sqrt{2}m)}$=$\sqrt{(\frac{5}{2}-\frac{5}{4}{m}^{2})^{2}}=\frac{5}{2}-\frac{5}{4}{m}^{2}$.
而︳MA︳•︳MB︳=$(\frac{1}{2}|AB|)^{2}=\frac{1}{4}$(10-5m2)=$\frac{5}{2}-\frac{5{m}^{2}}{4}$.
∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.

点评 本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(-1,1)上为减函数的是(  )
A.y=$\frac{1}{1-x}$B.y=cosxC.y=ln(x+1)D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足$\left\{\begin{array}{l}{y≥x-1}\\{y≥1-x}\\{y≤1}\end{array}\right.$,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{sinC}{c}$.
(Ⅰ)证明:sinAsinB=sinC;
(Ⅱ)若b2+c2-a2=$\frac{6}{5}$bc,求tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a(a>0)的解集是(  )
A.{x|0<x≤a}B.{x|x>0或x<-$\frac{4}{5}$a}
C.{x|-$\frac{a}{2}$<x<a}D.{x|-a≤x<-$\frac{4}{5}$a或0<x≤a}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=sinx-$\sqrt{3}$cosx的图象可由函数y=sinx+$\sqrt{3}$cosx的图象至少向右平移$\frac{2π}{3}$个单位长度得到.

查看答案和解析>>

同步练习册答案