分析 (Ⅰ)由题意可得a=2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b得答案;
(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB中点坐标,得到OM所在直线方程,再与椭圆方程联立,求出C,D的坐标,把︳MA︳•︳MB︳化为$\frac{1}{2}|AB{|}^{2}$,再由两点间的距离公式求得︳MC︳•︳MD︳的值得答案.
解答
(Ⅰ)解:如图,
由题意可得$\left\{\begin{array}{l}{a=2b}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\end{array}\right.$,解得a2=4,b2=1,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)证明:设AB所在直线方程为y=$\frac{1}{2}x+m$,
联立$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得x2+2mx+2m2-2=0.
∴△=4m2-4(2m2-2)=8-4m2>0,即$-\sqrt{2}<m<\sqrt{2}$.
设A(x1,y1),B(x2,y2),M(x0,y0),
则${x}_{1}+{x}_{2}=-2m,{x}_{1}{x}_{2}=2{m}^{2}-2$,
|AB|=$\sqrt{1+\frac{1}{4}}|{x}_{1}-{x}_{2}|=\sqrt{\frac{5}{4}}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{5}{4}}\sqrt{4{m}^{2}-4(2{m}^{2}-2)}=\sqrt{10-5{m}^{2}}$.
∴x0=-m,${y}_{0}=\frac{1}{2}{x}_{0}+m=\frac{m}{2}$,即M($-m,\frac{m}{2}$),
则OM所在直线方程为y=-$\frac{1}{2}x$,
联立$\left\{\begin{array}{l}{y=-\frac{1}{2}x}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\sqrt{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$.
∴C(-$\sqrt{2}$,$\frac{\sqrt{2}}{2}$),D($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$).
则︳MC︳•︳MD︳=$\sqrt{(-m+\sqrt{2})^{2}+(\frac{m}{2}-\frac{\sqrt{2}}{2})^{2}}$$•\sqrt{(-m-\sqrt{2})^{2}+(\frac{m}{2}+\frac{\sqrt{2}}{2})^{2}}$
=$\sqrt{(\frac{5}{4}{m}^{2}+\frac{5}{2}-\frac{5}{2}\sqrt{2}m)•(\frac{5}{4}{m}^{2}+\frac{5}{2}+\frac{5}{2}\sqrt{2}m)}$=$\sqrt{(\frac{5}{2}-\frac{5}{4}{m}^{2})^{2}}=\frac{5}{2}-\frac{5}{4}{m}^{2}$.
而︳MA︳•︳MB︳=$(\frac{1}{2}|AB|)^{2}=\frac{1}{4}$(10-5m2)=$\frac{5}{2}-\frac{5{m}^{2}}{4}$.
∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.
点评 本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{1-x}$ | B. | y=cosx | C. | y=ln(x+1) | D. | y=2-x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤a} | B. | {x|x>0或x<-$\frac{4}{5}$a} | ||
| C. | {x|-$\frac{a}{2}$<x<a} | D. | {x|-a≤x<-$\frac{4}{5}$a或0<x≤a} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com