分析 可令x=c,代入双曲线的方程,求得y=±$\frac{{b}^{2}}{a}$,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.
解答
解:令x=c,代入双曲线的方程可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
由题意可设A(-c,$\frac{{b}^{2}}{a}$),B(-c,-$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),D(c,$\frac{{b}^{2}}{a}$),
由2|AB|=3|BC|,可得
2•$\frac{2{b}^{2}}{a}$=3•2c,即为2b2=3ac,
由b2=c2-a2,e=$\frac{c}{a}$,可得2e2-3e-2=0,
解得e=2(负的舍去).
故答案为:2.
点评 本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | $\frac{9}{4}$ | D. | -$\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{15}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{15}$ | D. | $\frac{1}{30}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com