精英家教网 > 高中数学 > 题目详情
4.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=(  )
A.{1,3}B.{3,5}C.{5,7}D.{1,7}

分析 直接利用交集的运算法则化简求解即可.

解答 解:集合A={1,3,5,7},B={x|2≤x≤5},
则A∩B={3,5}.
故选:B.

点评 本题考查交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),x=-$\frac{π}{4}$为f(x)的零点,x=$\frac{π}{4}$为y=f(x)图象的对称轴,且f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)上单调,则ω的最大值为(  )
A.11B.9C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入的a值为1,则输出的k值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(-1,1)上为减函数的是(  )
A.y=$\frac{1}{1-x}$B.y=cosxC.y=ln(x+1)D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=2sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为(  )
A.y=2sin(2x+$\frac{π}{4}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{4}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{sinC}{c}$.
(Ⅰ)证明:sinAsinB=sinC;
(Ⅱ)若b2+c2-a2=$\frac{6}{5}$bc,求tanB.

查看答案和解析>>

同步练习册答案