分析 (Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;
(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.
解答
解:(Ⅰ)证明:∵P-ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,
∴PD⊥平面ABC,则PD⊥AB,
又E为D在平面PAB内的正投影,
∴DE⊥面PAB,则DE⊥AB,
∵PD∩DE=D,
∴AB⊥平面PDE,连接PE并延长交AB于点G,
则AB⊥PG,
又PA=PB,
∴G是AB的中点;
(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.
∵正三棱锥P-ABC的侧面是直角三角形,
∴PB⊥PA,PB⊥PC,
又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,
即点F为E在平面PAC内的正投影.
连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.
由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=$\frac{2}{3}$CG.
由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=$\frac{2}{3}$PG,DE=$\frac{1}{3}$PC.
由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3$\sqrt{2}$,PE=2$\sqrt{2}$.
在等腰直角三角形EFP中,可得EF=PF=2.
所以四面体PDEF的体积V=$\frac{1}{3}$×DE×S△PEF=$\frac{1}{3}$×2×$\frac{1}{2}$×2×2=$\frac{4}{3}$.
点评 本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-1,$\frac{1}{3}}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}}$] | D. | [-1,-$\frac{1}{3}}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | $\frac{9}{4}$ | D. | -$\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com