精英家教网 > 高中数学 > 题目详情
7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求$\frac{AM}{AP}$的值,若不存在,说明理由.

分析 (Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;
(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,-1,0),C(2,0,0),进一步求出向量$\overrightarrow{PB}、\overrightarrow{PD}、\overrightarrow{PC}$的坐标,再求出平面PCD的法向量$\overrightarrow{n}$,设PB与平面PCD的夹角为θ,由$sinθ=|cos<\overrightarrow{n},\overrightarrow{PB}>|=|\frac{\overrightarrow{n}•\overrightarrow{PB}}{|\overrightarrow{n}||\overrightarrow{PB}|}|$求得直线PB与平面PCD所成角的正弦值;
(Ⅲ)假设存在M点使得BM∥平面PCD,设$\frac{AM}{AP}=λ$,M(0,y1,z1),由$\overrightarrow{AM}=λ\overrightarrow{AP}$可得M(0,1-λ,λ),$\overrightarrow{BM}=(-1,-λ,λ)$,由BM∥平面PCD,可得
$\overrightarrow{BM}•\overrightarrow{n}=0$,由此列式求得当$\frac{AM}{AP}=\frac{1}{4}$时,M点即为所求.

解答 (Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
且AB⊥AD,AB?平面ABCD,
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD,
又PD⊥PA,且PA∩AB=A,
∴PD⊥平面PAB;
(Ⅱ)解:取AD中点为O,连接CO,PO,
∵CD=AC=$\sqrt{5}$,
∴CO⊥AD,
又∵PA=PD,
∴PO⊥AD.
以O为坐标原点,建立空间直角坐标系如图:
则P(0,0,1),B(1,1,0),D(0,-1,0),C(2,0,0),
则$\overrightarrow{PB}=(1,1,-1),\overrightarrow{PD}=(0,-1,-1)$,$\overrightarrow{PC}=(2,0,-1),\overrightarrow{CD}=(-2,-1,0)$,
设$\overrightarrow{n}=({x}_{0},{y}_{0},1)$为平面PCD的法向量,
则由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PD}=0}\\{\overrightarrow{n}•\overrightarrow{PC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-{y}_{0}-1=0}\\{2{x}_{0}-1=0}\end{array}\right.$,则$\overrightarrow{n}=(\frac{1}{2},-1,1)$.
设PB与平面PCD的夹角为θ,则$sinθ=|cos<\overrightarrow{n},\overrightarrow{PB}>|=|\frac{\overrightarrow{n}•\overrightarrow{PB}}{|\overrightarrow{n}||\overrightarrow{PB}|}|$=$|\frac{\frac{1}{2}-1-1}{\sqrt{\frac{1}{4}+1+1}×\sqrt{3}}|=\frac{\sqrt{3}}{3}$;
(Ⅲ)解:假设存在M点使得BM∥平面PCD,设$\frac{AM}{AP}=λ$,M(0,y1,z1),
由(Ⅱ)知,A(0,1,0),P(0,0,1),$\overrightarrow{AP}=(0,-1,1)$,B(1,1,0),$\overrightarrow{AM}=(0,{y}_{1}-1,{z}_{1})$,
则有$\overrightarrow{AM}=λ\overrightarrow{AP}$,可得M(0,1-λ,λ),
∴$\overrightarrow{BM}=(-1,-λ,λ)$,
∵BM∥平面PCD,$\overrightarrow{n}=(\frac{1}{2},-1,1)$为平面PCD的法向量,
∴$\overrightarrow{BM}•\overrightarrow{n}=0$,即$-\frac{1}{2}+λ+λ=0$,解得$λ=\frac{1}{4}$.
综上,存在点M,即当$\frac{AM}{AP}=\frac{1}{4}$时,M点即为所求.

点评 本题考查线面垂直的判定,考查了直线与平面所成的角,训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{t}$+$\frac{y^2}{3}$=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;
(Ⅱ)当2|AM|=|AN|时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入的a值为1,则输出的k值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,直线ρcosθ-$\sqrt{3}$ρsinθ-1=0与圆ρ=2cosθ交于A,B两点,则|AB|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(-1,1)上为减函数的是(  )
A.y=$\frac{1}{1-x}$B.y=cosxC.y=ln(x+1)D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案