精英家教网 > 高中数学 > 题目详情
17.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是$\frac{5}{6}$.

分析 出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.

解答 解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,
基本事件总数为n=6×6=36,
出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,
出现向上的点数之和不小于10包含的基本事件有:
(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,
∴出现向上的点数之和小于10的概率:
p=1-$\frac{6}{36}$=$\frac{5}{6}$.
故答案为:$\frac{5}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若安排期中考试的科目有6门,则语文必须在数学之前考的排法有(  )
A.720种B.360种C.240种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算不定积分${∫}_{\;}^{\;}$($\frac{2{x}^{2}+2x-1}{\sqrt{x}}$)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线l的一个法向量$\vec n$=(3,1),则直线l的一个方向向量$\vec d$和倾斜角α分别为(  )
A.$\overrightarrow{d}$=(1,3);α=arctan(-3)B.$\overrightarrow{d}$=(1,-3);α=arctan(-3)
C.$\overrightarrow{d}$=(1,3);α=π-arctan3D.$\overrightarrow{d}$=(1,-3);α=π-arctan3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{2x+y-2≥0}\\{3x-y-3≤0}\end{array}\right.$,则x2+y2的取值范围是[$\frac{4}{5}$,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)设a=2,b=$\frac{1}{2}$.
①求方程f(x)=2的根;
②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值;
(2)若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求$\frac{AM}{AP}$的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案