精英家教网 > 高中数学 > 题目详情

如果点(1,2)同时位于函数f(x)=及其反函数的图象上,则a,b的值分别为

[  ]

A.a=-3,b=6

B.a=-3,b=-6

C.a=3,b=-6

D.a=3,b=6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
x2
2
在(0,2)内具有“Lg”性质,且中值ξ=
2
,f′(ξ)=-
2
2

③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
x1+x2
2

其中你认为正确的所有命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•荆门模拟)下列命题中正确的是
①②③
①②③

①如果幂函数y=(m2-3m+3)xm2-m-2的图象不过原点,则m=1或m=2;
②定义域为R的函数一定可以表示成一个奇函数与一个偶函数的和;
③已知直线a、b、c两两异面,则与a、b、c同时相交的直线有无数条;
④方程
y-3
x-2
=
y-1
x+3
表示经过点A(2,3)、B(-3,1)的直线;
⑤方程
x2
2+m
-
y2
m+1
=1表示的曲线不可能是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的实数a1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为m、n,如果m+n是偶数,则把a1乘以2后再减去2;如果m+n是奇数,则把a1除以2后再加上2,这样就可得到一个新的实数a2,对a2仍按上述方法进行一次操作,又得到一个新的实数a3.当a3>a1时,甲获胜,否则乙获胜.若甲获胜的概率为
3
4
,则a1的值不可能是(  )

查看答案和解析>>

同步练习册答案