分析 由题意化简三角函数式可得cosA(sinB-3sinA)=0,分别就cosA=0或sinB-3sinA=0结合三角形的面积公式可得.
解答 解:∵在△ABC中sin(B+A)+sin(B-A)=3sin2A,
∴sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA,
∴2sinBcosA=6sinAcosA,故cosA(sinB-3sinA)=0,
当cosA=0时,A=$\frac{π}{2}$,由c=$\sqrt{7}$,C=$\frac{π}{3}$可得b=$\frac{\sqrt{21}}{3}$,故面积S=$\frac{1}{2}$bc=$\frac{7\sqrt{3}}{6}$;
当sinB-3sinA=0时,由正弦定理可得b=3a,再由c=$\sqrt{7}$,C=$\frac{π}{3}$,
由余弦定理可得7=a2+9a2-2•a•3a•$\frac{1}{2}$,解得a=1,故b=3,面积S=$\frac{1}{2}$absinC=$\frac{3\sqrt{3}}{4}$
故答案为:$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$
点评 本题考查正余弦定理解三角形,涉及分类讨论的思想和三角函数公式,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{21}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-6,2$\sqrt{3}$,4) | B. | (6,2$\sqrt{3}$,4) | C. | (-6,-2$\sqrt{3}$,4) | D. | (-6,2$\sqrt{3}$,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,c>d,则a-d<b-c | B. | 若ac2>bc2,则a>b | ||
| C. | 若c<b<a,且ac<0,则cb2<ab2 | D. | 若a>b,则lg(a-b)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com