【题目】已知函数
.
(1)判断函数
的奇偶性;
(2)判断并证明
)在
)上的单调性;
(3)若
对任意
恒成立,求
的取值范围.
【答案】(1)
为奇函数;(2)证明见解析;(3)
.
【解析】试题分析:
本题考查函数奇偶性的判断和单调性的证明,以及根据恒成立问题求参数取值范围。(1)根据奇偶性的判断方法证明。(2)根据单调性的判断方法证明。(3)根据函数的单调性将函数不等式转化为一般不等式,通过分离参数的方法转化为求具体函数的最值问题处理。
试题解析:
(1)
定义域R关于原点对称,
∵
,
为奇函数.
(2)证明:设
R,且
,
,
∵函数
在
上为增函数,
,故
,
.
∴函数
在
上是增函数 .
(3)![]()
,
又
为奇函数,
,
∵
在
上是增函数,
∴
对任意
恒成立,
∴
对任意
恒成立,
设
,则
,
∵
在
上为增函数,
∴当
时,函数
取得最小值,且
。
∴
。
故实数
的取值范围为
。
科目:高中数学 来源: 题型:
【题目】甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地西红柿从
月
日起开始上市.通过市场调查,得到西红柿种植成本
(就是每
公斤西红柿的种植成本,单位:元)与上市时间
(单位:天)的数据如下表:
上市时间 | 50 | 110 | 250 |
种植成本 | 150 | 108 | 150 |
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间
的变化关系:
;
;
;
,并求出函数解析式;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线y=﹣x+1与椭圆
+
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
,焦距为2,求线段AB的长;
(2)若向量
与向量
互相垂直(其中O为坐标原点),当椭圆的离心率e∈[
,
]时,求椭圆的长轴长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,nSn+1﹣(n+1)Sn=
,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为:
=
,
=
﹣
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-4=0.
(1)若直线l1,l2,l3交于一点,求实数m的值;
(2)若直线l1,l2,l3不能围成三角形,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com