【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = , = ﹣ .
【答案】解:(Ⅰ)由题所给的数据样本平均数 = =4, = =4.3.
∴ (xi﹣ )(yi﹣ )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+0+1×0.5+2×0.9+3×1.6=14
(xi﹣ )2=9+4+4+0+1+4+9=28.
∴ = =
∴ =4.3﹣ ×4=2.3,
∴y关于x的线性回归方程为:y= x+2.3.
(Ⅱ)由(Ⅰ)可得线性回归方程为y= x+2.3.
2017年人均纯收入,即x=8,可得y= (万元).
即预测该村2017年人均纯收入为6.3万元
【解析】(Ⅰ)利用公式求出 , ,即可得出结论.(Ⅱ)利用(Ⅰ)的线性回归方程,代入x=8即可.
科目:高中数学 来源: 题型:
【题目】在区间(﹣2,a)(a>0)上任取一个数m,若函数f(x)=3x+m﹣3 在区间[1,+∞)无零点的概率不小于 ,则实数a能取的最小整数是( )
A.1
B.3
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn是 与 的等比中项,求bn的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,点E是PD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E—AC—D的大小;
(Ⅲ)求点P到平面EAC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品在最近100天内的价格f(t)与时间t的函数关系式是
销售量g(t)与时间t的函数关系式是g(t)=- + (0≤t≤100),求这种商品的日销售额的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1=1,且an+1= (n∈N*).
(1)证明:数列{ }是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1 , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)若PA=1,求点E到平面PFD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com