精英家教网 > 高中数学 > 题目详情
9.设集合M={x|4≤2x≤16},N={x|x(x-3)<0},则M∩N=(  )
A.(0,3)B.[2,3]C.[2,3)D.(3,4)

分析 根据题意,解2个不等式求出集合M、N,由交集的定义计算可得答案.

解答 解:根据题意,4≤2x≤16⇒2≤x≤4,则M={x|4≤2x≤16}=[2,4];
x(x-3)<0⇒0<x<3,则N={x|x(x-3)<0}=(0,3);
则M∩N=[2,3);
故选:C.

点评 本题考查集合交集的计算,关键是正确求出集合M、N.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我们称f(x)为“类余弦型”函数.
(1)已知f(x)为“类余弦型”函数,且$f(1)=\frac{5}{4}$,求f(0)和f(2)的值;
(2)在(1)的条件下,定义数列an=2f(n+1)-f(n)(n=1,2,3…),求${log_2}\frac{a_1}{3}+{log_2}\frac{a_2}{3}+…+{log_2}\frac{{{a_{2017}}}}{3}$的值;
(3)若f(x)为“类余弦型”函数,且对于任意非零实数t,总有f(t)>1,证明:函数f(x)为偶函数;设有理数x1,x2满足|x1|<|x2|,判断f(x1)和f(x2)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.分别计算31+51,32+52,33+53,34+54,35+55,…,并根据计算的结果,猜想32017+52017的末位数字为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是偶函数,当0<x1<x2时,[f(x2)-f(x1)](x2-x1)>0恒成立,设$a=f(-\frac{1}{2}),b=f(2),c=f(3)$,则a,b,c的大小关系为(  )
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知三点A( 1,1 ),B( 4,2 ),C( 2,-2 ),则△ABC外接圆的方程为为x2+y2-6x+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为V=$\frac{160\sqrt{5}π}{3}$,则OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2(2x-2-x),则不等式f(2x+1)+f(1)<0的解集是(  )
A.$({-∞,-\frac{1}{2}})$B.(-∞,-1)C.$({-\frac{1}{2},+∞})$D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象相邻两个对称中心之间的距离为$\frac{π}{2}$,则f(x)的一个单调递增区间为(  )
A.(-$\frac{π}{6}$,$\frac{π}{3}$)B.(-$\frac{π}{3}$,$\frac{π}{6}$)C.($\frac{π}{6}$,$\frac{2π}{3}$)D.($\frac{π}{3}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
投入促销费用x(万元)2356
商场实际营销额y(万元)100200300400
(1)求出x,y之间的回归直线方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)

查看答案和解析>>

同步练习册答案