| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
分析 过球心O作平面ABCD的垂线OG,则G为正方形中心,∠OAG为OA与平面ABCD所成的角,求出球的半径OA,再求出AG,即可得出所求角的余弦值.
解答 解:如图,![]()
设球O的半径为R,由V球=$\frac{4}{3}π{R}^{3}$=$\frac{160\sqrt{5}π}{3}$,
得${R}^{3}=\sqrt{8000}$,∴R=$2\sqrt{5}$,即OA=$2\sqrt{5}$.
设正方形ABCD的中心为G,连接OG,则OG⊥平面ABCD,
且AG=$\frac{1}{2}AC=\frac{1}{2}×2\sqrt{2}=\sqrt{2}$.
∴OA与平面ABCD所成的角的余弦值为$\frac{AG}{OA}=\frac{\sqrt{2}}{2\sqrt{5}}=\frac{\sqrt{10}}{10}$.
故选:A.
点评 本题考查了线面角的计算,球的结构特征,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [0,2] | B. | [1,2] | C. | [-1,2] | D. | [-1,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2k-1 | C. | 2k | D. | 2k+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com