精英家教网 > 高中数学 > 题目详情
4.${∫}_{0}^{π}$cos$\frac{x}{2}$dx的值是(  )
A.2B.1C.4D.5

分析 利用微积分基本道理,找出被积函数的原函数,计算即可.

解答 解:${∫}_{0}^{π}$cos$\frac{x}{2}$dx=$2sin\frac{x}{2}{|}_{0}^{π}$=2;
故选A.

点评 本题考查了定积分的计算;正确找出原函数是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知各项为正数的数列{an},满足$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$,n∈N*,其中a1=1,Sn为其前n项的和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\left.{\frac{1}{S_n}}\right\}}\right.$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=log32,b=ln2,$c={5^{\frac{1}{2}}}$则(  )
A.c>b>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

报废年限
车型
1年2年3年4年总计
A20353510100
B10304020100
经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考数据:,$\sum_{i=1}^6{({x_i}-\overline x)({y_i}}-\overline y)=35$,$\sum_{i=1}^6{{{({x_i}-\overline x)}^2}}$=17.5.
参考公式:
回归直线方程为$\hat y=\hat bx+\hat a$其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我们称f(x)为“类余弦型”函数.
(1)已知f(x)为“类余弦型”函数,且$f(1)=\frac{5}{4}$,求f(0)和f(2)的值;
(2)在(1)的条件下,定义数列an=2f(n+1)-f(n)(n=1,2,3…),求${log_2}\frac{a_1}{3}+{log_2}\frac{a_2}{3}+…+{log_2}\frac{{{a_{2017}}}}{3}$的值;
(3)若f(x)为“类余弦型”函数,且对于任意非零实数t,总有f(t)>1,证明:函数f(x)为偶函数;设有理数x1,x2满足|x1|<|x2|,判断f(x1)和f(x2)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)同时满足以下三个性质:
①f(x)的最小正周期为π;      
②f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是减函数;
③对任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0,则f(x)的解析式可能是(  )
A.f(x)=|sin(2x-$\frac{π}{4}$)|B.f(x)=sin2x+cos2xC.f(x)=cos(2x+$\frac{3π}{4}$)D.f(x)=-tan(x+$\frac{π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方体ABCD-A1B1C1D1棱长为1.
(1)求证:BD1⊥平面ACB1
(2)求直线BA1与平面A1C1D1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别是F1,F2,P为椭圆C1上任意一点,|PF1|+|PF2|的最大值为4.
(I)求椭圆C1的方程;
(II)设椭圆C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$为椭圆C2上一点,过点Q的直线交椭圆C1于A,B两点,且Q为线段AB的中点,过O,Q两点的直线交椭圆C1于E,F两点.
(i)求证:直线AB的方程为x0x+2y0y=2;
(ii)当Q在椭圆C2上移动时,求$\frac{{|{AB}|}}{{|{EF}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为V=$\frac{160\sqrt{5}π}{3}$,则OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案