精英家教网 > 高中数学 > 题目详情
12.随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

报废年限
车型
1年2年3年4年总计
A20353510100
B10304020100
经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考数据:,$\sum_{i=1}^6{({x_i}-\overline x)({y_i}}-\overline y)=35$,$\sum_{i=1}^6{{{({x_i}-\overline x)}^2}}$=17.5.
参考公式:
回归直线方程为$\hat y=\hat bx+\hat a$其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{t}$.

分析 (Ⅰ)求出回归系数,可得回归方程,即可得出结论;
(Ⅱ)分别计算相应的数学期望,即可得出结论.

解答 解:(Ⅰ)由题意,$\overline{x}$=3.5,$\overline{y}$=16,$\widehat{b}$=$\frac{35}{17.5}$=2,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$=16-2×3.5=9,
∴$\widehat{y}$=2x+9,
x=7时,$\widehat{y}$=2×7+9=23,即预测M公司2017年4月份(即x=7时)的市场占有率为23%;
(Ⅱ)由频率估计概率,每辆A款车可使用1年,2年,3年、4年的概率分别为0.2,0.35,0.35,0.1,
∴每辆A款车的利润数学期望为(500-1000)×0.2+(1000-1000)×0.35+(1500-1000)×0.35+(2000-1000)×0.1=175元;
每辆B款车可使用1年,2年,3年、4年的概率分别为0.1,0.3,0.4,0.2,
∴每辆B款车的利润数学期望为(500-1200)×0.1+(1000-1200)×0.3+(1500-1200)×0.4+(2000-1200)×0.2=150元;
∵175>150,
∴应该采购A款车.

点评 本题考查数学知识在实际生活中的应用,考查学生的阅读能力,对数据的处理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=$\frac{1}{2}×$(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角$\frac{2π}{3}$,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是($\sqrt{3}≈1.73$)(  )
A.16平方米B.18平方米C.20平方米D.25平方米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,已知椭圆两焦点坐标为F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),椭圆C上的点到右焦点距离最小值为3-2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设斜率为-2的直线交曲线C于E、F两点,求线段EF的中点N的轨迹方程;
(3)设经过点F1(-2$\sqrt{2}$,0)的直线与曲线C相交所得的弦为线段PQ,求△PQO的面积的最大值(O是坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解某地高中生的身高情况,研究小组在该地高中生中随机抽出30名高中生的身高统计成如图所示的茎叶图(单位:cm).
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.
(1)求众数和平均数
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,矩形ABCD中,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影E落在BC上.

(1)求证:平面ACD⊥平面ABC;
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,若集合A={x|x2+x=0},B={x|x2-x≤0},则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${∫}_{0}^{π}$cos$\frac{x}{2}$dx的值是(  )
A.2B.1C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$、$\overrightarrow{b}$是两个不共线向量,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=λ$\overrightarrow{b}$,$\overrightarrow{OC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,若A,B,C三点共线,则实数λ的值等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=$\sqrt{3}$,则c=2或1.

查看答案和解析>>

同步练习册答案