精英家教网 > 高中数学 > 题目详情
5.已知集合A={y|y=|x|,x∈R},B={y|y2-y-2≤0},则A∩B=(  )
A.[0,2]B.[1,2]C.[-1,2]D.[-1,0]

分析 根据题意,求出集合A、B,由交集的定义计算可得答案.

解答 解:根据题意,A={y|y=|x|,x∈R}=[0,+∞),
B={y|y2-y-2≤0}=[-1,2],
则A∩B=[0,2];
故选:A.

点评 本题考查集合交集的计算,关键是掌握集合交集的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设a=log32,b=ln2,$c={5^{\frac{1}{2}}}$则(  )
A.c>b>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方体ABCD-A1B1C1D1棱长为1.
(1)求证:BD1⊥平面ACB1
(2)求直线BA1与平面A1C1D1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别是F1,F2,P为椭圆C1上任意一点,|PF1|+|PF2|的最大值为4.
(I)求椭圆C1的方程;
(II)设椭圆C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$为椭圆C2上一点,过点Q的直线交椭圆C1于A,B两点,且Q为线段AB的中点,过O,Q两点的直线交椭圆C1于E,F两点.
(i)求证:直线AB的方程为x0x+2y0y=2;
(ii)当Q在椭圆C2上移动时,求$\frac{{|{AB}|}}{{|{EF}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.分别计算31+51,32+52,33+53,34+54,35+55,…,并根据计算的结果,猜想32017+52017的末位数字为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\vec a=({x,x-1}),\vec b=({1,2})$,且$\vec a∥\vec b$,则$\vec a•\vec b$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是偶函数,当0<x1<x2时,[f(x2)-f(x1)](x2-x1)>0恒成立,设$a=f(-\frac{1}{2}),b=f(2),c=f(3)$,则a,b,c的大小关系为(  )
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为V=$\frac{160\sqrt{5}π}{3}$,则OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数(a2-l)+(a-1)i(i为虚数单位)是纯虚数,则实数a=(  )
A.±1B.-1C.0D.1

查看答案和解析>>

同步练习册答案