精英家教网 > 高中数学 > 题目详情
10.设向量$\vec a=({x,x-1}),\vec b=({1,2})$,且$\vec a∥\vec b$,则$\vec a•\vec b$=-5.

分析 由$\vec a∥\vec b$,列出方程求出x=-1,从而$\overrightarrow{a}$=(-1,-2),由此能求出$\vec a•\vec b$.

解答 解:∵向量$\vec a=({x,x-1}),\vec b=({1,2})$,且$\vec a∥\vec b$,
∴$\frac{x}{1}=\frac{x-1}{2}$,解得x=-1,
∴$\overrightarrow{a}$=(-1,-2),
∴$\vec a•\vec b$=-1-4=-5.
故答案为:-5.

点评 本题考查向量的数量积的求法,考查向量平行、向量坐标运算法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为了解某地高中生的身高情况,研究小组在该地高中生中随机抽出30名高中生的身高统计成如图所示的茎叶图(单位:cm).
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.
(1)求众数和平均数
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$、$\overrightarrow{b}$是两个不共线向量,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=λ$\overrightarrow{b}$,$\overrightarrow{OC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,若A,B,C三点共线,则实数λ的值等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知不等式组$\left\{\begin{array}{l}0≤x≤π\\ y≤sinx+a\\ y≥0\end{array}\right.$所对应的平面区域面积为2+2π,则$\sqrt{3}x+2y+1$的最大值为(  )
A.$\frac{{5\sqrt{3}π}}{6}+6$B.$\sqrt{3}π+7$C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={y|y=|x|,x∈R},B={y|y2-y-2≤0},则A∩B=(  )
A.[0,2]B.[1,2]C.[-1,2]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥E-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD-CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD
(1)求证:平面BED⊥平面AEC;
(2)求二面角D--BM-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=$\sqrt{3}$,则c=2或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow a=({x,2}),\overrightarrow b=({1,-1})$,且$({\overrightarrow a-\overrightarrow b})⊥\overrightarrow b$,则x的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={x|x2-4=0}的子集个数(  )
A.0B.1C.2D.4

查看答案和解析>>

同步练习册答案