精英家教网 > 高中数学 > 题目详情
20.集合A={x|x2-4=0}的子集个数(  )
A.0B.1C.2D.4

分析 解方程求出集合A,从而求出A的子集的个数.

解答 解:由x2-4=0,解得:x=±2,
故A={-2,2},故子集的个数是22=4个,
故选:D.

点评 本题考查了集合的子集问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设向量$\vec a=({x,x-1}),\vec b=({1,2})$,且$\vec a∥\vec b$,则$\vec a•\vec b$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精确到0.01)相比于(Ⅰ)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则$\frac{{2{S_1}}}{S_2}$=(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数(a2-l)+(a-1)i(i为虚数单位)是纯虚数,则实数a=(  )
A.±1B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式($\frac{1}{2}$-x)($\frac{1}{3}$-x)>0的解集是(  )
A.{x|$\frac{1}{3}$<x<$\frac{1}{2}$}B.{x|x>$\frac{1}{2}$}C.{x|x<$\frac{1}{3}$}D.{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,$\overrightarrow{AB}=(2,4)$,$\overrightarrow{AC}=(1,3)$,则$\overrightarrow{CB}$=(  )
A.(3,7)B.(3,5)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}前n项和为Sn,且Sn=2an-(n-1)q-1,其中n∈N*,q为常数.
(Ⅰ)当q=0时,求数列{an}的通项公式;
(Ⅱ)当q>1时,对任意n∈N*,且n≥2,证明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并证明你的猜想.

查看答案和解析>>

同步练习册答案