精英家教网 > 高中数学 > 题目详情
若关于x的方程(其中z∈C)有实数根,在使得复数z的模取到最小时,该方程的解为   
【答案】分析:当x为实数时,根据z的模的解析式,利用基本不等式求出z的模时,实数x=±2,求出对应的z值,从而得到对应的方程,解方程求得该方程的解.
解答:解:当x为实数时,由方程(其中z∈C)可得
z==x+-
它的模为=≥2
当且仅当x2=4,即 x=±2时,取等号.
故满足条件的复数z=,或 z=
当z= 时,方程即
此时,方程的一个根为x=2,另一个根为 x=
当 z=  时,方程即
此时,方程的一个根为 x=-2,另一个根为 x=
综上,该方程的解为,或
故答案为:,或
点评:本题考查虚数系数的一元二次方程的解法,复数模的定义和求法,基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R
(1)求f(x)的表达式,并给出一个f(x)取得最大值时的x的值;
(2)求f(x)的单调递增区间;
(3)若关于x的方程f(x)-m=0(x∈[-
π
4
π
3
]有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,设函数f(x)=
a
b
(x∈R)
的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个结论:
①函数f(x)=
2x-1
x+1
的对称中心是(-1,2);
②若关于x的方程x-
1
x
+k=0在x∈(0,1)没有实数根,则k的取值范围是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的必要不充分条件;
④若将函数f(x)=sin(2x-
π
3
)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12
;其中正确的结论是
①③④
①③④

查看答案和解析>>

同步练习册答案