精英家教网 > 高中数学 > 题目详情

给定抛物线C:y2=4x,F是其焦点,过F的直线l:y=k(x-1),它与C相交于A、B两点.如果数学公式数学公式.那么k的变化范围是


  1. A.
    [数学公式]
  2. B.
    数学公式
  3. C.
    [数学公式]∪[-数学公式,-数学公式]
  4. D.
    (-∞,-数学公式]∪[数学公式,+∞)
C
分析:根据 得关于x2和y2的方程组,进而求得x2=λ.得到B的坐标,根据焦点坐标可得直线的方程,进而求得直线在y轴上的截距,根据=,判断上是递减的,进而得到答案.
解答:由题设知得:(x2-1,y2)=λ(1-x1,-y1),即 (2)
由(2)得y222y12
∵y12=4x1,y22=4x2,∴x22x1(3)
联立(1)(3)解得x2=λ.依题意有λ>0.
∴B(λ,2)或B(λ,-2),又F(1,0),
得直线l的方程为(λ-1)y=2 (x-1)或(λ-1)y=-2 (x-1)
当λ∈时,l在y轴上的截距为 或-
=,可知 上是递减的,
,-≤-≤-
直线l在y轴上截距的变化范围是[]∪[-,-]
故选C.
点评:本题主要考查了抛物线的应用和抛物线与直线的关系.考查了学生对圆锥曲线知识的综合掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点,记O为坐标原点.
(1)求
OA
OB
的值;
(2)设
AF
FB
,当三角形OAB的面积S∈[2,
5
]时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.
(Ⅰ)设l的斜率为1,求
OA
OB
夹角的大小;
(Ⅱ)设
FB
=λ
AF
,若λ∈[4,9],求l在y轴上截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.设l的斜率为1,则
.
OA
.
OB
夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是其焦点,过F的直线l:y=k(x-1),它与C相交于A、B两点.如果
FB
AF
λ∈[
1
16
1
4
]
.那么k的变化范围是(  )
A、[
8
15
4
3
]
B、[-
4
3
,-
8
15
]
C、[
8
15
4
3
]∪[-
4
3
,-
8
15
]
D、(-∞,-
4
3
]∪[
8
15
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

给定抛物线c:y2=4x,F是c的焦点,过点F的直线l与c相交于A,B两点.
(1)设l的斜率为1,求
OA
OB
夹角的余弦值;
(2)设
FB
=λ
AF
,若λ∈[4,9],求l在y轴上的截距的取值范围.

查看答案和解析>>

同步练习册答案