精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.

(Ⅰ)求证:an+1=an+;

(Ⅱ)证明:数列{an-1}为等比数列,并求{an}的通项公式.

证明:(Ⅰ)由已知f(an)=(an-1)2,g(an)=4(an-1),

∵(an+1-an)g(an)+f(an)=0.∴(an+1-an)4(an-1)+(an-1)2=0,∴即3-2an-4an+1an+4an+1-1=0

(-1)+(2-2an)-4an+1(an-1)=0,即(an-1)(3an-4an+1+1)=0,

∵an≠1,∴3an-4an+1+1=0,∴aa+1=(3an+1)=an+.

(Ⅱ)证明:=,

∴{an-1}是以a1-1=0为首项,公比为的等比数列,∴an-1=()n-1,∴an=()n-1+1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案