精英家教网 > 高中数学 > 题目详情
过点P(1,0)的直线l与曲线C:(θ为参数)交于A、B两点,试求|PA|+|PB|的最大值.

解析:由t的几何意义可知|PA|+|PB|=|t1-t2|

==≤2(α=0时取等号).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南八校高三第一次联考理科数学试卷 题型:解答题

(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直

 

线倾斜角为,原点到该直线的距离为.

 

(1)求椭圆的方程;

(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;

(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省教育考试院高考测试样卷(理) 题型:解答题

   已知抛物线C的顶点在原点, 焦点为F(0, 1).

(Ⅰ) 求抛物线C的方程;

(Ⅱ) 在抛物线C上是否存在点P, 使得过点P的直

线交C于另一点Q, 满足PF⊥QF, 且PQ与C

在点P处的切线垂直? 若存在, 求出点P的坐标;

若不存在, 请说明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013年河南省南阳一中高考数学三模试卷(理科)(解析版) 题型:解答题

椭圆E:=1(a>b>0)离心率为,且过P().
(1)求椭圆E的方程;
(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若=,且λ+μ=,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源:2013年河南省南阳一中高考数学三模试卷(理科)(解析版) 题型:解答题

椭圆E:=1(a>b>0)离心率为,且过P().
(1)求椭圆E的方程;
(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若=,且λ+μ=,求抛物线C的标准方程.

查看答案和解析>>

同步练习册答案