精英家教网 > 高中数学 > 题目详情
已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P (X=
3
4
);
(Ⅱ) 求数学期望E (X ).
(Ⅰ)由题意得取出的三角形的面积是
3
4
的概率P(X=
3
4
)=
6
C36
=
3
10
.…(7分)
(Ⅱ) 随机变量X的分布列为
X
3
4
3
2
3
3
4
P
3
10
6
10
1
10
所以E(X)=
3
4
×
3
10
+
3
2
×
6
10
+
3
3
4
×
1
10
=
9
3
20
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、给出如下四个命题:
①对于任意一条直线a,平面α内必有无数条直线与a垂直;
②若α、β是两个不重合的平面,l、m是两条不重合的直线,则α∥β的一个充分而不必要条件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四条不重合的直线,如果a⊥c,a⊥d,b⊥c,b⊥d,则“a∥b”与“c∥d”不可能都不成立;
④已知命题P:若四点不共面,那么这四点中任何三点都不共线.
则命题P的逆否命题是假命题上命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d都是正数,S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,则S的取值范围是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D四点不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,则四边形EFGH是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d是实数,用分析法证明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步练习册答案