精英家教网 > 高中数学 > 题目详情

(本题12分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品的销售利润与上市时间的关系.

(1)写出市场的日销售量与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?

(1)
(2)第一批产品A上市后的第27天这家公司日销售利润最大,最大利润是万元.

解析试题分析:(1)先根据题意设f(t)=a(t-20)2+60,由f(0)=0求得a值即得日销售量f(t)(2)与第一批产品A上市时间t的关系式;
(2)先写出销售利润为g(t)万元,分类讨论:当30≤t≤40时,当0<t≤30时,分别研究它们的单调性,而t∈N,故比较g(26),g(27)即可,经计算,g(26)<g(27),故第一批产品A上市后的第27天这家公司日销售利润最大。
解:(1) 设,由可知
;……………4分
(2) 设销售利润为万元,则
           ……………………8分
时,单调递减;
时,,易知单增,单减,而,故比较,经计算,,故第一批产品A上市后的第27天这家公司日销售利润最大,最大利润是万元.………………12分
考点:本试题主要考查了分段函数,以及函数与方程的思想,属于基础题.
点评:解决该试题的函数模型为分段函数,求分段函数的最值,应先求出函数在各部分的最值,然后取各部分的最值的最大值为整个函数的最大值,取各部分的最小者为整个函数的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同时满足条件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的最大值为,最小值为
(1)求
(2)作出的图像,并分别指出的最小值和的最大值各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
(1)
(2)已知,且,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对边长分别为.
(1)求的最大值及的取值范围;
(2)求函数的最值. (本题满分12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)若,且满足
⑴求的值;
⑵若,求的值。                                 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若 

(1)求函数的解析式;
(2)画出函数的图象,并说出函数的单调区间;
(3)若,求相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,判断上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= (a>0,x>0).
(1)用函数的单调性定义证明:f(x)在(0,+∞)上是增函数;
(2)若f(x)在[,2]上的值域是[,2],求实数a的值.

查看答案和解析>>

同步练习册答案