精英家教网 > 高中数学 > 题目详情
8.函数y=loga(x+2)+2的图象过定点(-1,2).

分析 根据对数函数的性质,求出定点的坐标即可.

解答 解:令x+2=1,解得:x=-1,
此时y=2,
故函数过(-1,2),
故答案为:(-1,2).

点评 本题考查了对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在(1+x+x2n=Dn0+Dn1x+Dn2x2+…+Dnrxr+…+Dn2n-1x2n-1+Dn2nx2n的展开式中,把Dn0,Dn1,Dn2,…,Dn2n叫做三项式系数.
(1)当n=2时,写出三项式系数D20,D21,D22,D23,D24的值;
(2)类比二项式系数性质Cn+1m=Cnm-1+Cnm(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数Dn+1m+1(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在公差为3的等差数列{an}中,a5+a6=7,则a6+a8的值为(  )
A.13B.16C.19D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均不相等的等差数列{an}的前n项和为Sn,S10=45,且a3,a5,a9恰为等比数列{bn}的前三项,记cn=(bn-am)(bn+1-am).
(1)分别求数列{an}、{bn}的通项公式;
(2)若m=17,求cn取得最小值时n的值;
(3)当c1为数列{cn}的最小项时,m有相应的可取值,我们把所有am的和记为A1;…;当ci为数列{cn}的最小项时,m有相应的可取值,我们把所有am的和记为Ai;…,令Tn=A1+A2+…An,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=ex-ax2,g(x)是f(x)的导函数.
(I )求g(x)的极值;
(II)证明:对任意实数x∈R,都有f′(x)≥x-2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设Tn是数列{an}的前n项之积,并满足:Tn=1-an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)证明数列{$\frac{1}{{T}_{n}}$}等差数列;
(Ⅲ)令bn=$\frac{{a}_{n}}{{n}^{2}+n}$,证明{bn}前n项和Sn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2$\sqrt{2}$,左焦点F(-1,0),若过点B(-2b,0)的直线与椭圆交于M,N两点.
(1)求椭圆G的标准方程;
(2)求证:∠MFB+∠NFB=π;
(3)求△FMN的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{x-2}{x+2}$ex
(Ⅰ)确定函数f(x)的单调性;
(Ⅱ)证明:函数g(x)=$\frac{2{e}^{x}-x-1}{2{x}^{2}}$在(0,+∞)上存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示是沿圆锥的两条母线将圆锥削去一部分后得几何体的三视图,其体积为$\frac{16π}{9}+\frac{2\sqrt{3}}{3}$,则圆锥的母线长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

同步练习册答案