精英家教网 > 高中数学 > 题目详情
20.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2$\sqrt{2}$,左焦点F(-1,0),若过点B(-2b,0)的直线与椭圆交于M,N两点.
(1)求椭圆G的标准方程;
(2)求证:∠MFB+∠NFB=π;
(3)求△FMN的面积S的最大值.

分析 (1)由椭圆的长轴长为2$\sqrt{2}$,左焦点F(-1,0),列出方程组,求出a,b,由此能求出椭圆G的标准方程.
(2)证明∠MFB+∠NFB=π,即证明kMF+kNF=0,设MN的直线方程为y=k(x+2),代入椭圆方程,得:(1+2k2)x2+8k2x+8k2-2=0,由此根的判别式、韦达定理、直线的斜率能证明∠MFB+∠NFB=π.
(3)S=$\frac{1}{2}$•FB•|y1-y2|,由此利用弦长公式、换元法能求出△FMN的面积S的最大值.

解答 解:(1)∵椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2$\sqrt{2}$,左焦点F(-1,0),
∴$\left\{\begin{array}{l}{2a=2\sqrt{2}}\\{c=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,
解得a=$\sqrt{2}$,b=1,c=1,
∴椭圆G的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
证明:(2)证明∠MFB+∠NFB=π,即证明kMF+kNF=0,
设MN的直线方程为y=k(x+2),代入椭圆方程,得:
(1+2k2)x2+8k2x+8k2-2=0,
∵△=64k4-4(1+2k2)(8k2-2)>0,∴${k}^{2}<\frac{1}{2}$,
设M(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=-\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
∴kMF+kNF=$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{k({x}_{1}+2)}{{x}_{1}+1}+\frac{k({x}_{2}+2)}{{x}_{2}+1}$
=k[2+$\frac{{x}_{1}+{x}_{2}+2}{({x}_{1}+1)({x}_{2}+1)}$]=0,
∴∠MFB+∠NFB=π.
解:(3)S=$\frac{1}{2}$•FB•|y1-y2|
=$\frac{1}{2}$$\sqrt{\frac{8(1-2{k}^{2}){k}^{2}}{(1+2{k}^{2})^{2}}}$,
令t=1+2k2,则S=$\sqrt{2}•\sqrt{\frac{-{t}^{2}+3t-2}{2{t}^{2}}}$=$\sqrt{-2(\frac{1}{t}-\frac{3}{4})^{2}+\frac{1}{8}}$,
当${k}^{2}=\frac{1}{6}$(满足${k}^{2}<\frac{1}{2}$),
∴S的最大值为$\frac{\sqrt{2}}{4}$.

点评 本题考查椭圆方程、三角形面积的最大值的求法,考查椭圆方程、根的判别式、韦达定理、直线的斜率、换元法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若实数x、y满足xy>0,则$\frac{x}{x+y}$+$\frac{2y}{x+2y}$的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.公差不为0的等差数列{an}中,Sn为其前n项和,S8=S13,且a15+am=0,则m的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=loga(x+2)+2的图象过定点(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数x,y∈R,则“x>0,y>0”是“x+y>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(1-2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7则代数式a12+2a1a2+3a1a3+4a1a4+5a1a5+6a1a6+7a1a7的值为(  )
A.98B.-98C.-196D.196

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下关于向量说法的四个选项中正确的选项是(  )
A.若任意向量$\overrightarrow a与\overrightarrow b$共线且$\overrightarrow a$为非零向量,则有唯一一个实数λ,使得$\overrightarrow a=λ\overrightarrow b$
B.对于任意非零向量$\overrightarrow a与\overrightarrow b$,若$(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-\overrightarrow b)=0$,则$|{\overrightarrow a}|=|{\overrightarrow b}|$
C.任意非零向量$\overrightarrow a与\overrightarrow b$满足$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}||{\overrightarrow b}|$,则$\overrightarrow a与\overrightarrow b$同向
D.若A,B,C三点满足$\overrightarrow{OA}=\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,则点A是线段BC的三等分点且离C点较近

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在区间(-1,1)上既是奇函数又是增函数的是(  )
A.y=tanxB.y=-x3-3xC.y=|sinx|D.y=$\frac{1}{x+1}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则Sn=(  )
A.2-21-nB.2n-1-1C.2n-1D.2-2n-1

查看答案和解析>>

同步练习册答案