精英家教网 > 高中数学 > 题目详情

如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的直角坐标系,求抛物线方程.
现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

(1) (2)梯形ABCD的下底AB=米时,所挖的土最少.

解析试题分析:(1)如图 以O为原点,AB所在的直线
为X轴,建立平面直角坐标系,  1分

则F(2,3),  2分
设抛物线的方程是  3分
因为点F在抛物线上,所以

所以抛物线的方程是         5分
(2) 依题等腰梯形ABCD中,AB∥CD,线段AB的中点O是抛物线的顶点,AD,AB,BC分别与抛物线切于点M,O,N        6分
,设,则抛物线在N处的切线方程是
,且        8分
所以,        10分
梯形ABCD的面积是
           12分
答:梯形ABCD的下底AB=米时,所挖的土最少.
考点:本题考查了抛物线的实际运用
点评:借助坐标系,将实际应用问题、几何问题转化代数计算问题,这是解析几何的任务之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知,求函数的最大值和最小值;
(2)要使函数上f (x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量(件)之间近似满足关系:
(其中为小于96的正整常数)
(注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量。
试将生产这种仪器每天的赢利T(元)表示为日产量(件的函数);
当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
(1)    (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求实数m的值;
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时,有(其中为自然对数的底,).
(1)求函数的解析式;
(2)设,求证:当时,
(3)试问:是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

查看答案和解析>>

同步练习册答案