精英家教网 > 高中数学 > 题目详情
仓库的房顶呈四棱锥形,量得底面的边长为2.6米,侧棱长2.1米,现在要在房顶上铺一层油毡纸的面积是多少?
考点:棱柱、棱锥、棱台的侧面积和表面积
专题:空间位置关系与距离
分析:由条件求得四棱锥的一个侧面等腰三角形底边上的高h,可得四棱锥的一个侧面等腰三角形的面积,再把此面积乘以4,即得此四棱锥的侧面积,即为所求.
解答: 解:四棱锥的一个侧面为等腰三角形,设底边上的高为h,则由题意可得h=
2.12-(
2.6
2
)
2
=
2.72
=4
0.17
(米),
故此四棱锥的侧面积为4(
1
2
×2.6×4
0.17
)=20.8
0.17
 (平方米),
故在房顶上铺一层油毡纸的面积是 20.8
0.17
 平方米.
点评:本题主要考查求四棱锥的侧面积,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(1,-3),
b
=(-2,4),
c
=(1,5),若表示向量
a
b
、2
b
-
c
d
连接能构成四边形,则向量
d
为(
 
 
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD为菱形,E,F为PC的三等分点.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若PD=
3
,AD=2,∠BAD=60°,求二面角P-BC-A的大小;
(Ⅲ)在直线PB上是否存在一点G,使平面BDE∥平面AFG?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a=2,b=1,∠B=45°,则此三角形有
 
个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
(x>1,a为常数).
(1)若对任意x>1,都有f(x)>0恒成立,求实数a的取值范围;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如表所示,
t(s)00.10.20.30.40.50.60.70.8
Y(cm)-4.0-2.80.02.84.02.80.0-2.8-4.0
则可近似地描述该物体的位移y和时间t之间关系的三角函数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x0是函数y=f(x)的极值点,同时也是其导函数y=f′(x)的极值点,则称x0是函数y=f(x)的“致点”.
(Ⅰ)已知a>0,求函数f(x)=(x2+ax+1)ex的极值和单调区间;,
(Ⅱ)函数f(x)=(x2+ax+1)ex是否有“致点”?若有,求出“致点”;若没有,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,2)、B(2,1)、C(-2,-2),点P(x,y)在△ABC内部及其边界,若目标函数z=mx+ny的最大值不大于6,则mn的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
a
x2
+
b
x+
c
=0
,其中
a
b
c
是非零向量,且
a
b
不共线,则该方程(  )
A、至多有一个解
B、至少有一个解
C、至多有两个解
D、可能有无数多个解

查看答案和解析>>

同步练习册答案