精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知函数f(x)=2x3-3ax2+(a2+2)x-a(a∈R).
(I)若当x=1时,函数f(x)取得极值,求a的值;
(II)若函数f(x)仅有一个零点,求a的取值范围.
分析:(I)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间,从而得出函数的极值情况.
(II)由函数零点的存在定理,我们可以将函数的解析式进行因式分解,最后综合条件,即可得到f(x)=0有且仅有一个实数解,则实数a的取值可得.
解答:解:f′(x)=6x2-6ax+(a2+2),
(I)f′(1)=6-6a+(a2+2),令f′(x)=0,解得a=2或a=4,
当a=2时,f′(x)=6x2-12x+6=6(x-1)2,显然f(x)在x=1处不取得极值;
当a=4时,f′(x)=6x2-24x+18=6(x-1)(x-3),
显然f(x)在x=1处取得极大值.
故a的值为4.
(II)f(x)=2x3-3ax2+(a2+2)x-a
=(2x3-2ax2+2x)-(ax2-a2x+a)
=(x2-ax+1)(2x-a)
得f(x)的一个零点是
a
2
,又函数f(x)仅有一个零点,
∴△=(-a)2-4×1×1<0,解得-2<a<2,
故a的取值范围(-2,2).
点评:本题考查了函数在某点取得极值的条件、利用导数研究函数的极值,函数零点的判定定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案