精英家教网 > 高中数学 > 题目详情

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于任意,总有成立,求实数的取值范围.

【答案】(Ⅰ)见解析; (Ⅱ).

【解析】试题分析:( 的导数 ,根据 求出的值域,讨论 的值得出的正负情况,判断的单调性和极值点问题;( 等价于,由,利用分离常数法求出的表达式,再构造函数求最值即可求出结果.

试题解析:

, ,

,即时, 恒成立, 单调增, 没有极值点;

,即时,方程有两个不等正数解

不妨设,则当时, 增; 时, 减; 时, 增,所以分别为极大值点和极小值点, 有两个极值点.

综上所述,当时, 没有极值点;当时, 有两个极值点.

,由,即对于恒成立,设

时, 减, 时, 增,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和

1求数列的通项公式;

2设数列的通项,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E=1(ab>0),其左右焦点为F1F2,过F2的直线l交椭圆E于A,B两点,△AB F1的周长为8,且△AF1F2的面积最大时,△AF1F2为正三角形。

(1)求椭圆E的方程;

(2)若MN是椭圆E经过 原点的弦,MN||AB,求证: 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线,直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。

(Ⅰ)求集成电路E需要维修的概率;

(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中的值;

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年巴西奥运会的周边商品有80%左右为中国制造,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:

编号

1

2

3

4

5

169

178

166

175

180

75

80

77

70

81

(1)求乙厂生产的产品数量:

(2)当产品中的微量元素满足:,且时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,平面的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣ax2,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)证明:当x>0时,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

同步练习册答案