精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=1,3anan-1anan-1=0(n≥2).

(1)求证:数列{}是等差数列;

(2)求数列{an}的通项公式.


解:(1)证明:因为3anan-1anan-1=0(n≥2),

整理得=3(n≥2).

所以数列{}是以1为首项,3为公差的等差数列.

(2)由(1)可得=1+3(n-1)=3n-2,

所以an.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


若复数z满足zi=1-i,则z等于(  )

A.-1-i                               B.1-i 

C.-1+i                               D.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:


已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:


 已知数列{an}中,a2=102,an+1an=4n,则数列{}的最小项是(  )

A.第6项 B.第7项 C.第8项 D.第9项

查看答案和解析>>

科目:高中数学 来源: 题型:


设等差数列{an}的前n项和为Sn,且满足S15>0,S16<0,则中最大项为(  )

A.                                  B. 

C.                                   D.

查看答案和解析>>

科目:高中数学 来源: 题型:


公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=(  )

A.1                                    B.2 

C.4                                    D.8

查看答案和解析>>

科目:高中数学 来源: 题型:


各项均为正数的等比数列{an}的前n项和为Sn,若a3=2,S4=5S2,则a1的值为________,S4的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a2·a4=65,a1a5=18.

(1)若1<i<21,a1aia21是某等比数列的连续三项,求i的值;

(2)设bn,是否存在一个最小的常数m使得b1b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


 (1)求点A(3,2)关于点B(-3,4)的对称点C的坐标;

(2)求直线3xy-4=0关于点P(2,-1)对称的直线l的方程;

(3)求点A(2,2)关于直线2x-4y+9=0的对称点的坐标.

查看答案和解析>>

同步练习册答案