分析 (1)根据对称轴判断g(x)在区间[2,3]上为单调增函数,列出等式即可;
(2)对任意x∈[1,2),g(x)≥0恒成立即ax2-2ax+2≥0⇒a≤-$\frac{2}{{x}^{2}-x}$;
(3)由题意g(x)=ax2-2ax+2=(x2-2x)a+2≥0;令h(a)═(x2-2x)a+2,即转为关于a的一次函数求解;
(4)由(1)知g(x)=x2-2x+1;f(x)=g(|x|)=|x|2-2|x|+1,f(2)=1当f(x)>1时,解得x>2或x<-2;要使得f(log2k)>3,即:log2k>2或log2k<-2;
解答 解:(1)由题意知,g(x)的对称轴为:x=1,开口朝上;
g(x)在[2,3]上单调递增,故有$\left\{\begin{array}{l}{g(2)=1}\\{g(3)=4}\end{array}\right.$⇒$\left\{\begin{array}{l}{4a-4a+1+b=1}\\{9a-6a+1+b=4}\end{array}\right.$
解得:$\left\{\begin{array}{l}{b=0}\\{a=1}\end{array}\right.$
(2)由b=1知,g(x)=ax2-2ax+2;
对任意x∈[1,2),g(x)≥0恒成立即ax2-2ax+2≥0⊕;
∴x∈[1,2)∴-1≤x2-2x<0;
化简⊕后:a≤-$\frac{2}{{x}^{2}-x}$,令h(x)=-$\frac{2}{{x}^{2}-x}$,即h(x)在x∈[1,2)上的最小值h(-1)=2;
∴a≤2;
(3)由b=1知,g(x)=ax2-2ax+2=(x2-2x)a+2≥0;
令h(a)═(x2-2x)a+2?;
①当x2-2x=0,即 x=0或2,?式在a∈[2,3]时成立;
②当x2-2x>0时,即x<0或x>2,h(a)在[2,3]是增函数,需h(2)≥0⇒(x2-2x)×2+2≥0
解得:x<0或x>2
③当x2-2x<0 时,即0<x<2,h(a)在[2,3]上是减函数,需h(3)≥0⇒(x2-2x)×3+2≥0
解得:0<x≤1-$\frac{\sqrt{3}}{3}$ 或 1+$\frac{\sqrt{3}}{3}$≤x<2
综上所述:x≤1-$\frac{\sqrt{3}}{3}$或≥1+$\frac{\sqrt{3}}{3}$
(4)由(1)知g(x)=x2-2x+1;
f(x)=g(|x|)=|x|2-2|x|+1,f(2)=1
当f(x)>1时,解得x>2或x<-2
要使得f(log2k)>3,即:log2k>2或log2k<-2
解得:k>4或k<$\frac{1}{4}$
点评 本题主要考查了二次函数的性质、转化思想、分类参数求最值以及偶函数性质等综合知识点,属中等题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -20 | B. | -21 | C. | 20 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充分必要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com