精英家教网 > 高中数学 > 题目详情
9.已知f(x)=$\left\{\begin{array}{l}{x-5,x≥7}\\{f(x+2),x<7}\end{array}\right.$,则f(-2)=(  )
A.2B.3C.4D.5

分析 由已知得f(-2)=f(0)=f(2)=f(4)=f(6)=f(8),由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{x-5,x≥7}\\{f(x+2),x<7}\end{array}\right.$,
∴f(-2)=f(0)=f(2)=f(4)=f(6)=f(8)=8-5=3.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生学生中抽取50人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个直径AB=2的半圆,过A作这个圆所在平面的垂线,在垂线上取一点S,使AS=AB,C为半圆上一个动点,N,M分别为A在SC,SB上的射影.当三棱锥S-AMN的体积最大时,∠BAC的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0).
(1)在区间[2,3]上的最大值为4,最小值为1,求实数a,b的值;
(2)若b=1,对任意x∈[1,2),g(x)≥0恒成立,则a的范围;
(3)若b=1,对任意a∈[2,3],g(x)≥0恒成立,则x的范围;
(4)在(1)的条件下记f(x)=g(|x|),若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,n),$\overrightarrow{b}$=(9n-7,2)且$\overrightarrow{a}$与$\overrightarrow{b}$共线.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{a{x}^{2}-x+3}$,其中 a∈R.
(1)若函数f(x)的定义域为R,求实数a的范围;
(2)若函数f(x)的值域为[0,+∞),求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+a|+|x-3|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥x+8的解集;
(Ⅱ)若函数f(x)的最小值为5,求a的值.
(Ⅲ)若当a=2时,关于实数x的不等式f(x)≥t2-$\frac{1}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l1的倾斜角为$\frac{3π}{4}$,直线l2经过点A(3,2),B(a,-1)且l1与l2互相垂直,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y2=6x的准线方程是(  )
A.$x=-\frac{3}{2}$B.$x=\frac{3}{2}$C.$y=-\frac{3}{2}$D.$y=\frac{3}{2}$

查看答案和解析>>

同步练习册答案