精英家教网 > 高中数学 > 题目详情
2.A={x|x≤0或x≥2},B={x|x>2},则“x∈A”是“x∈B”的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分也非必要条件

分析 根据A、B的包含关系,结合充分必要条件的定义判断即可.

解答 解:∵A={x|x≤0或x≥2},B={x|x>2},
∴B?A,
则“x∈A”是“x∈B”必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若直线ax+by+1=0(ab>0)被圆(x+4)2+(y+1)2=16截得的弦长为8,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线$\sqrt{2}$ax+by=1与圆x2+y2=1相交于A,B两点(期中a,b是实数),且△AOB是直角三角形(O是坐标原点),求点P(a,b)与点(0,1)之间距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sinx(cosx-sinx),则下列说法正确的为(  )
A.函数f(x)的最小正周期为2π
B.f(x)的图象关于直线$x=\frac{π}{8}$
C.对称f(x)的最大值为$\sqrt{2}$
D.将f(x)的图象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$个单位长度后会得到一个奇函数的图象

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0).
(1)在区间[2,3]上的最大值为4,最小值为1,求实数a,b的值;
(2)若b=1,对任意x∈[1,2),g(x)≥0恒成立,则a的范围;
(3)若b=1,对任意a∈[2,3],g(x)≥0恒成立,则x的范围;
(4)在(1)的条件下记f(x)=g(|x|),若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{a}^{x}+b,x≤0}\end{array}\right.$,且f(0)=2,f(-1)=3,则f(f(-3))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{a{x}^{2}-x+3}$,其中 a∈R.
(1)若函数f(x)的定义域为R,求实数a的范围;
(2)若函数f(x)的值域为[0,+∞),求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\frac{1}{x}$,则$\lim_{x→a}\frac{f(x)-f(a)}{x-a}$等于-$\frac{1}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,已知a1=2,a2=4,那么a4=(  )
A.6B.8C.16D.32

查看答案和解析>>

同步练习册答案