选修4-5:不等式选讲
设函数f(x)=|x-a|+3x,其中a>0.
(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.
分析:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x-1|≥2.直接求出不等式f(x)≥3x+2的解集即可.
(Ⅱ)由f(x)≤0得|x-a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.
解答:解:(Ⅰ)当a=1时,f(x)≥3x+2可化为
|x-1|≥2.
由此可得x≥3或x≤-1.
故不等式f(x)≥3x+2的解集为
{x|x≥3或x≤-1}.
(Ⅱ)由f(x)≤0得
|x-a|+3x≤0
此不等式化为不等式组
0或
即
或
因为a>0,所以不等式组的解集为{x|x
≤-}
由题设可得-
=-1,故a=2
点评:本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.