精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形的边长为4,点 分别为 的中点,将 ,分别沿 折起,使 两点重合于点,连接.

(1)求证: 平面

(2)求与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(Ⅰ) 平面,又平面, ,由已知可得 平面;(Ⅱ)由面面垂直的性质定理可得与平面所成角,在中, ,从而可得与平面所成角的正弦值.

试题解析:(Ⅰ) 平面

平面, ,

由已知可得 平面

(Ⅱ)由(Ⅰ)知平面平面,则与平面所成角,

交于点,连,则

平面 平面

中,

与平面所成角的正弦值为

【方法点晴】本题主要考查线面垂直的判定定理及线面角的求法,属于难题. 证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面平面,且

是等边三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列项和为,且.

(1)证明数列是等比数列;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是正三角形,线段都垂直于平面,设,且的中点.

(1)求证:平面

(2)求证:

(3)求平面与平面所成的较小二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,确定函数的单调区间.

,且对于任意 恒成立,求实数的取值范围.

)求证:不等式对任意正整数恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图所示

)写出及图中的值.

)设,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:不等式的解集中的整数有且仅有-101.a的取值范围.

命题Q:集合.

1)分别求命题PQ为真命题时的实数a的取值范围;

2)当实数a取何值时,命题PQ中有且仅有一个为真命题;

3)设PQ皆为真时a的取值范围为集合S,若全集,求实数m的取值范围.

查看答案和解析>>

同步练习册答案