精英家教网 > 高中数学 > 题目详情
等差数列an不是常数列,a5=10,且a5,a7,a10是某一等比数列bn的第1,3,5项.
(1)求数列an的第20项;
(2)求数列bn的通项公式.
分析:(1)先用a5和d表示出a7和a10,进而利用等比中项的性质,建立等式求得d,进而根据等差数列的通项公式求得an的第20项;
(2)由(1)知an为正项数列,进而根据q2=
b3
b1
求得公比,进而利用等比数列的通项公式求得答案.
解答:解:(1)设数列an的公差为d,则a5=10,a7=10+2d,a10=10+5d
因为等比数列bn的第1、3、5项也成等比,所以a72=a5a10
即:(10+2d)2=10(10+5d),
解得d=
5
2
,d=0舍去)
∴a20=a5+15d=47.5.

(2)由(1)知an为正项数列,
所以q2=b3/b1=a7/a5=
15
10
=
3
2

q=±(
3
2
)
1
2

bn=b1qn-1=a5qn-1=±10(
3
2
)
n-1
2
点评:本题主要考查了等比数列和等差数列的性质.考查了对于等差数列和等比数列通项公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.则下列命题中真命题的序号是
①③
①③

①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③“等差数列是常数列”是“等差数列成为比等差数列”的充分必要条件;
④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题,其中所有真命题的序号是
①④
①④

①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③等差数列是常数列是成为比等差数列的充分必要条件;
(文)④数列{an}满足:an+1=an2+2an,a1=2,则此数列的通项为an=32n-1-1,且{an}不是比等差数列;
(理)④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

A已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an  (n∈N*)
,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn
1
4
m2+m-1
对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4
bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把数列{ank}叫做数列{an}的k方数列(其中an>0,k,n是正整数),S(k,n)表示k方数列的前n项的和.
(1)比较S(1,2)•S(3,2)与[S(2,2)]2的大小;
(2)若数列{an}的1方数列、2方数列都是等差数列,a1=a,求数列{an}的k方数列通项公式.
(3)对于常数数列an=1,具有关于S(k,n)的恒等式如:S(1,n)=S(2,n),S(2,n)=S(3,n)等等,请你对数列{an}的k方数列进行研究,写出一个不是常数数列{an}的k方数列关于S(k,n)的恒等式,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题:
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=3•2n-1,则数列{an}是比等差数列,且比公差λ=0;
③等比数列一定是比等差数列,等差数列一定不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是
①②
①②

查看答案和解析>>

同步练习册答案