£¨2013•·¿É½Çø¶þÄ££©ÔÚÊýÁÐ{an}ÖУ¬Èç¹û¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ
an+2
an+1
-
an+1
an
=¦Ë£¨¦ËΪ³£Êý£©£¬Ôò³ÆÊýÁÐ{an}Ϊ±ÈµÈ²îÊýÁУ¬¦Ë³ÆΪ±È¹«²î£®ÏÖ¸ø³öÒÔÏÂÃüÌ⣺
¢ÙÈôÊýÁÐ{Fn}Âú×ãF1=1£¬F2=1£¬Fn=Fn-1+Fn-2£¨n¡Ý3£©£¬Ôò¸ÃÊýÁв»ÊDZȵȲîÊýÁУ»
¢ÚÈôÊýÁÐ{an}Âú×ãan=3•2n-1£¬ÔòÊýÁÐ{an}ÊDZȵȲîÊýÁУ¬Çұȹ«²î¦Ë=0£»
¢ÛµÈ±ÈÊýÁÐÒ»¶¨ÊDZȵȲîÊýÁУ¬µÈ²îÊýÁÐÒ»¶¨²»ÊDZȵȲîÊýÁУ»
¢ÜÈô{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÔòÊýÁÐ{anbn}ÊDZȵȲîÊýÁУ®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ú
¢Ù¢Ú
£®
·ÖÎö£º¢Ùì³²¨ÄÇÆõÊýÁÐ{Fn}£¬¸ù¾Ýì³²¨ÄÇÆõÊýÁеÄÐÔÖʽøÐл¯¼ò±äÐΣ¬¿´ÆäÊÇ·ñÂú×ã±ÈµÈ²îÊýÁеĶ¨Ò壻
¢ÚÈôan=3•2n-1£¬´úÈë
an+2
an+1
-
an+1
an
½øÐÐÇó½â¿´ÊÇ·ñÊdz£Êý£¬¿ÉµÃ´ð°¸£»
¢Û¸ù¾ÝµÈ±ÈÊýÁеĶ¨Òå¿ÉÖª
an+2
an+1
=
an+1
an
£¬Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬ÈôµÈ²îÊýÁÐΪan=n£¬¿´ÆäÊÇ·ñÂú×ã
an+2
an+1
-
an+1
an
=¦Ë£¨¦ËΪ³£Êý£©£»
¢ÜÈç¹û{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬Éèan=n£¬bn=2n£¬¿´ÆäÊÇ·ñÂú×ã±ÈµÈ²îÊýÁеĶ¨Ò壮
½â´ð£º½â£º½â£º¢ÙÓÉÌâÒâÖª£¬ÊýÁÐ{Fn}Ϊ쳲¨ÄÇÆõÊýÁÐ{Fn}£¬
an+2
an+1
-
an+1
an
=
an+1+an
an+1
-
an+an-1
an
¡Ù³£Êý£¬²»Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬¹Ê¢ÙÕýÈ·£»
¢ÚÈôan=3•2n-1£¬Ôò
an+2
an+1
-
an+1
an
=
3•2n+1
3•2n
-
3•2n
3•2n-1
=2-2
=0£¬Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬¹Ê¢ÚÕýÈ·£»
¢ÛµÈ±ÈÊýÁж¼ÓÐ
an+2
an+1
-
an+1
an
=0£¬Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬ÈôµÈ²îÊýÁÐΪan=1£¬ÔòÓÐ
an+2
an+1
-
an+1
an
=0£¬¹Ê¢Û²»ÕýÈ·£»
¢ÜÈç¹û{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬Éèan=n£¬bn=2n£¬
Ôò
an+2
an+1
-
an+1
an
=
(n+2)•2n+2
(n+1)•2n+1
-
(n+1)•2n+1
n•2n
=
2(n+2)
n+1
-
2(n+1)
n
=-
2
n(n+1)
¡Ù³£Êý£¬²»Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬¹Ê¢Ü²»ÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Ú
µãÆÀ£º±¾Ì⿼²éж¨Ò壬½âÌâʱӦÕýÈ·Àí½âж¨Ò壬ͬʱעÒâÀûÓÃÁоٷ¨ÅжÏÃüÌâΪ¼Ù£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèf¡ä£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬f¡å£¨x£©ÊÇf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¹Õµã¾ÍÊǶԳÆÖÐÐÄ£®Èôf(x)=
1
3
x3-
1
2
x2+
1
6
x+1
£¬Ôò¸Ãº¯ÊýµÄ¶Ô³ÆÖÐÐÄΪ
(
1
2
£¬1)
(
1
2
£¬1)
£¬¼ÆËãf(
1
2013
)+f(
2
2013
)+f(
3
2013
)+¡­+f(
2012
2013
)
=
2012
2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©ÒÑÖªº¯Êýf(x)=(x2+x-a)e
xa
£¨a£¾0£©£®
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±x=-5ʱ£¬f£¨x£©È¡µÃ¼«Öµ£®
¢ÙÈôm¡Ý-5£¬Çóº¯Êýf£¨x£©ÔÚ[m£¬m+1]ÉϵÄ×îСֵ£»
¢ÚÇóÖ¤£º¶ÔÈÎÒâx1£¬x2¡Ê[-2£¬1]£¬¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÔòÕâ¸ö¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©ÏÂÁÐËĸöº¯ÊýÖУ¬¼ÈÊÇÆ溯ÊýÓÖÔÚ¶¨ÒåÓòÉϵ¥µ÷µÝÔöµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬2Sn=an+1£¬ÔòSn=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸