精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)若上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.
(Ⅰ);(Ⅱ)0.

试题分析:(Ⅰ)函数上为增函数,则它的导函数上恒成立,于是问题转化为不等式恒成立问题,这类问题若方便分离参数一般分离参数,若不方便分离参数,则可从函数自身的单调性解决,但往往会涉及分类讨论,较为麻烦,根据题目特点,本题需要采用第二种方法;(Ⅱ)这是一个由方程有解求参数取值范围(或最值)的问题,这类问题若方便分离参一般可分离参数,转化为求函数的值域问题,若不方便分离参数,则根据函数类型,采用数形结合方法解答,本题适合于第一种方法,但本题分离参数后,若直接求的最值,则较为困难,比较巧妙的做法是,将问题转化为求的最值.
试题解析:(I)因为函数上为增函数,所以
上恒成立
?当时,上恒成立,
所以上为增函数,故 符合题意
?当时,由函数的定义域可知,必须有恒成立,故只能,所以上恒成立
令函数,其对称轴为,因为,所以,要使上恒成立,只要即可,
,所以因为,所以.综上所述,的取值范围为 
(Ⅱ)当时,可化为
问题转化为上有解,
即求函数的值域,

所以当时,上为增函数,当时,上为减函数,因此
,所以,即当时,取得最大值0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为;当时,车流速度为千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程的解属于区间(   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于的方程有四个不同的实数解,则的取值范围为         (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,则方程在区间上的所有实根之和最接近下列哪个数(   )
A. 10B. 8C. 7D. 6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足,则的最小值(   )
A.2B.C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案