精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2a2lnx(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)记函数f(x)的最小值为M,求证:M≤1.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(Ⅰ)确定函数的定义域,求导函数,利用导数的正负,可得函数f(x)的单调区间;
(Ⅱ)由(Ⅰ)知,f(x)的最小值M=a2-2a2lna,令g(x)=x2-2x2lnx(x>0)求出函数的最大值,即可得出结论.
解答: (Ⅰ)解:f(x)=x2-2a2lnx(a>0)的定义域为(0,+∞).
f′(x)=2x-
2a2
x
=
2x2-2a2
x
=
2(x+a)(x-a)
x
.…(2分)
令f'(x)=0,解得x=a或x=-a(舍).
当x在(0,+∞)内变化时,f'(x),f(x)的变化情况如下:
x (0,a) a (a,+∞)
f'(x) - 0 +
f(x) a2-2a2lna
由上表知,f(x)的单调递增区间为(a,+∞);f(x)的单调递减区间为(0,a).…(5分)
(Ⅱ)证明:由(Ⅰ)知,f(x)的最小值M=a2-2a2lna.…(6分)
令g(x)=x2-2x2lnx(x>0),则g'(x)=2x-4xlnx-2x=-4xlnx.
令g'(x)=0,解得x=1.…(8分)
当x在(0,+∞)内变化时,g'(x),g(x)的变化情况如下:
x (0,1) 1 (1,+∞)
g'(x) + 0 -
g(x) 1
所以函数g(x)的最大值为1,即g(x)≤1.
因为a>0,所以 M=a2-2a2lna≤1.…(11分)
点评:本题考查导数知识的运用,考查函数的单调性与最值,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平行四边形ABCD中,AB=1,AD=
2
,且∠BAD=45°,以BD为折线,把△ABD折起,使平面ABD⊥平面BCD,连接AC.

(Ⅰ)求证:AB⊥DC;
(Ⅱ)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex
(Ⅰ)求函数h(x)=(x-k)f(x)(k∈R)的单调区间;
(Ⅱ)设函数g(x)=
a
f(x)
+x,a∈R,求g(x)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)点A(-2,0),B(2,0),点G是轨迹Γ上的一个动点,直线AG与直线x=2相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+2cos2ωx,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为
π
6
.若将函数f(x)的图象向右平移
π
6
个单位后,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的最大值及单调递减区间.
(2)(文)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3且f(A)=2,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足a2=4,a3+a4=17.
(1)求{an}的通项公式;
(2)设bn=2an+2,证明数列{bn}是等比数列并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
5
+y2=1的右焦点为F,P为椭圆上的一个动点.
(Ⅰ)求线段PF的中点M的轨迹C2的方程;
(Ⅱ)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当|AB|=|FC|-|FB|时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,n),
b
=(-1,n),若2
a
-
b
b
垂直,则正数n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数y=logax,y=ax,y=x+a在同一坐标系中的图象可能是
 

查看答案和解析>>

同步练习册答案