精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x(x∈R),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是
a≥-
17
12
a≥-
17
12
分析:先根据函数奇偶性定义,解出奇函数f(x)和偶函数g(x)的表达式,将这个表达式不等式af(x)+g(2x)≥0,通过变形可得a≥
22x+2-2x
2(2-x-2x)
=
(2x-2-x)2+2
2(2-x-2x)
=
1
2-x-2x
+2-x-2x
)×
1
2
,通过换元,讨论出右边在x∈(0,1]的最大值,可以得出实数a的取值范围.
解答:解:∵h(x)为定义在R上的偶函数,g(x)为定义在R上的奇函数
∴g(-x)=-g(x),h(-x)=h(x)
又∵由h(x)+g(x)=2x
h(-x)+g(-x)=h(x)-g(x)=2-x
∴h(x)=
1
2
(2x+2-x)
,g(x)=
1
2
(2x-2-x)

不等式2ag(x)+h(2x)≥0在[1,2]上恒成立,化简为a(2x-2-x)+
1
2
(22x+2-2x)
≥0,x∈[1,2]
∵1≤x≤2∴2x-2-x>0
令t=2-x-2x,
整理得:a≥
22x+2-2x
2(2-x-2x)
=
(2x-2-x)2+2
2(2-x-2x)
=
1
2-x-2x
+
2-x-2x
2

=
1
2
t+
1
t
=
1
2
t+
2
t
),则由-
15
4
≤t≤-
3
2
可知y=
1
2
(t+
2
t
)在[-
15
4
,-
3
2
]单调递增
∴当t=-
3
2
时,ymax=-
17
12

因此,实数a的取值范围是a≥-
17
12

故答案为a≥-
17
12
点评:本题以指数型函数为载体,考查了函数求表达式以及不等式恒成立等知识点,合理地利用函数的基本性质,再结合换元法和基本不等式的技巧,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案