精英家教网 > 高中数学 > 题目详情
16.已知圆柱的底面直径和高都等于球的直径,则球的表面积与圆柱的表面积之比是2:3,球的体积与圆柱的体积之比是2:3.

分析 设球的半径为r,则 S圆柱:S=[2πr2+(2r)•2πr]:4πr2,球的体积与圆柱的体积之比是$\frac{4}{3}π{r}^{3}:π{r}^{2}•2r$,可得结论.

解答 解:设球的半径为r,则 S圆柱:S=[2πr2+(2r)•2πr]:4πr2=3:2.
∴球的表面积与圆柱的表面积之比是2:3.
球的体积与圆柱的体积之比是$\frac{4}{3}π{r}^{3}:π{r}^{2}•2r$=2:3.
故答案为:2:3;2:3.

点评 本题考查几何体的表面积,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+2bx+5(b∈R).
(1)若b=2,试解不等式f(x)<10;
(2)若f(x)在区间[-4,-2]上的最小值为-11,试求b的值;
(3)若|f(x)-5|≤1在区间(0,1)上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有一张画有内接正方形的圆形纸片,若随机向圆形纸片内丢一粒小豆子,则豆子落入正方形内的概率为$\frac{2}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=kx+b(k>0),若x∈[0,1],y∈[-1,1],则函数y=f(x)的解析式是(  )
A.y=2x-1B.$y=\frac{1}{2}(x-1)$C.y=2x-1或y=-2x+1D.y=-2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l1:2x+y+1=0,直线l2:x+ay+3=0,若l1⊥l2,则实数a的值是(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=$\frac{π}{3}$.
(Ⅰ) 证明:AP⊥BC;
(Ⅱ)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,则实数t=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.θ为锐角,sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则tanθ+$\frac{1}{tanθ}$=(  )
A.$\frac{25}{12}$B.$\frac{7}{24}$C.$\frac{24}{7}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x|-x+1,则不等式f(1-x2)>f(1-2x)的解集为{x|x>2或x<-1}.

查看答案和解析>>

同步练习册答案