精英家教网 > 高中数学 > 题目详情

 已知ABC中,,若该三角形有两个解,则x的取值范围是_______.

 

【答案】

【解析】因为解:由正弦定理可知=2

∴a=sinA ,A+C=180°-45°=135°A有两个值,则这两个值互补.若A≤45°则和A互补的角大于135°这样A+B>180°,不成立∴45°<A<135°又若A=90,这样补角也是90°,一解

所以 <sinA<1,a=2sinA所以2<a<2

故答案为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,(a-c)(sinA+sinC)=(a-b)sinB,(1)求∠C;(2)若△ABC的外接圆半径为2,试求该三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列一些说法:
(1)已知△ABC中,acosB=bcosA,则△ABC为等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,则△ABC为等腰或直角三角形.
(3)已知数列{an}满足
a
2
n+1
a
2
n
=p(p为正常数,n∈N*),则称{an}为“等方比数列”.若数列{an}是等方比数列则数列{an}必是等比数列.
(4)等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2.
其中正确的说法的序号依次是
(2)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知△ABC中,a、b、c分别为角A、B、C的对边长,S表示该三角形的面积,且2cos2B=cos2B+2cosB.
(1)求角B的大小;
(2)若a=2,S=2
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>

同步练习册答案