精英家教网 > 高中数学 > 题目详情
精英家教网如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=
2

等边三角形ADB以AB为轴运动.
(Ⅰ)当平面ADB⊥平面ABC时,求CD;
(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
分析:(Ⅰ)取出AB中点E,连接DE,CE,由等边三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD.
(Ⅱ)总有AB⊥CD,当D∈面ABC内时,显然有AB⊥CD,当D在而ABC外时,可证得AB⊥平面CDE,定有AB⊥CD.
解答:精英家教网解:(Ⅰ)取AB的中点E,连接DE,CE,
因为ADB是等边三角形,所以DE⊥AB.
当平面ADB⊥平面ABC时,
因为平面ADB∩平面ABC=AB,
所以DE⊥平面ABC,
可知DE⊥CE
由已知可得DE=
3
,EC=1
,在Rt△DEC中,CD=
DE2+EC2
=2


(Ⅱ)当△ADB以AB为轴转动时,总有AB⊥CD.
证明:(ⅰ)当D在平面ABC内时,因为AC=BC,AD=BD,
所以C,D都在线段AB的垂直平分线上,即AB⊥CD.

(ⅱ)当D不在平面ABC内时,由(Ⅰ)知AB⊥DE.又因AC=BC,所以AB⊥CE.
又DE,CE为相交直线,所以AB⊥平面CDE,由CD?平面CDE,得AB⊥CD.
综上所述,总有AB⊥CD.
点评:本题考查用线面垂直的方法来证明线线垂直,考查答题者的空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、如图,A,B,C,D四点都在平面a,b外,它们在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,在b内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=
2
.等边三角形ADB以AB为轴运动.当CD=
 
时,面ACD⊥面ADB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B、C、D是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5:1:2:3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)如图,A,B,C,D是⊙O上的四个点,过点B的切线与DC的延长线交于点E.若∠BCD=110°,则∠DBE=(  )

查看答案和解析>>

同步练习册答案