精英家教网 > 高中数学 > 题目详情
正方体中,点分别在线段上,且 .以下结论:①;②;③MN//平面;④MN异面;⑤MN⊥平面.其中有可能成立的结论的个数为(    )
A.5B.4 C.3D.2
A

 
垂足是
是平行四边形;

分别是线段的中点时,分别是的中点;此时

点时,在点此时异面;
分别是线段的中点时,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图四棱锥的底面是正方形,,点E在棱PB上,O为AC与BD的交点。
(1)求证:平面
2)当E为PB中点时,求证://平面PDA,//平面PDC。
(3)当且E为PB的中点时,求与平面所成的角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b为两条不同的直线,α、β为两个不同的平面,
且a⊥α,b⊥β,则下列命题中为假命题的是
A.若a∥b,则α∥β
B.若α⊥β,则a⊥b
C.若a,b相交,则α,β相交
D.若α,β相交,则a,b相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。
  
(1)证明:A1B1⊥C1D;
(2)当的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

判断下列命题,正确的个数为(    )
①直线与平面没有公共点,则
②直线平行于平面内的一条直线,则
③直线与平面内的无数条直线平行,则
④平面内的两条直线分别平行于平面,则
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求证:平面⊥平面
(2)求三棱锥的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,分别为BC, CC1中点,
则异面直线所成角的大小为
                             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么(    )
A.点P必在直线AC上 B.点P必在直线BD上
C.点P必在平面DBC内              D.点P必在平面ABC外

查看答案和解析>>

同步练习册答案