【题目】如图,已知, 分别是中点,弧的半径分别为,点平分弧,过点作弧的切线分别交于点.四边形为矩形,其中点在线段上,点在弧上,延长与交于点.设,矩形的面积为.
(1)求的解析式并求其定义域;
(2)求的最大值.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣﹣2lnx.
(Ⅰ)若f(x)在x=2时有极值,求实数a的值和f(x)的极大值;
(Ⅱ)若f(x)在定义域上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分别为的中点, 为底面的重心.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于下列命题,正确的个数是( )
①若点(2,1)在圆x2+y2+kx+2y+k2﹣15=0外,则k>2或k<﹣4
②已知圆M:(x+cosθ)2+(y﹣sinθ)2=1,直线y=kx,则直线与圆恒相切
③已知点P是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,则四边形PACB的最小面积是为2
④设直线系M:xcosθ+ysinθ=2+2cosθ,M中的直线所能围成的正三角形面积都等于12 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F为椭圆C1: =1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[ , ],则双曲线C2的离心率的取值范围是( )
A.[ , ]
B.[ ,++∞)
C.(1,4]
D.[ ,4]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com