【题目】如图,已知
,
分别是
中点,弧
的半径分别为
,点
平分弧
,过点
作弧
的切线分别交
于点
.四边形
为矩形,其中点
在线段
上,点
在弧
上,延长
与
交于点
.设
,矩形
的面积为
.
(1)求
的解析式并求其定义域;
(2)求
的最大值.
![]()
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣
﹣2lnx.
(Ⅰ)若f(x)在x=2时有极值,求实数a的值和f(x)的极大值;
(Ⅱ)若f(x)在定义域上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD所在的平面和平面
互相垂直,等腰梯形
中,
,
,
,
,
分别为
的中点,
为底面
的重心.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于下列命题,正确的个数是( )
①若点(2,1)在圆x2+y2+kx+2y+k2﹣15=0外,则k>2或k<﹣4
②已知圆M:(x+cosθ)2+(y﹣sinθ)2=1,直线y=kx,则直线与圆恒相切
③已知点P是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,则四边形PACB的最小面积是为2
④设直线系M:xcosθ+ysinθ=2+2cosθ,M中的直线所能围成的正三角形面积都等于12
.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F为椭圆C1:
=1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[
,
],则双曲线C2的离心率的取值范围是( )
A.[
,
]
B.[
,++∞)
C.(1,4]
D.[
,4]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com