精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=4cos(ωx-$\frac{π}{6}$)sin(π-ωx)-sin(2ωx-$\frac{π}{2}$),其中ω>0.
(1)求函数f(x)的值域
(2)若y=f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]为增函数,求ω的最大值.

分析 (1)利用辅助角公式,化简f(x)=$\sqrt{3}$sin2ωx+1,即可求得函数f(x)的值域;
(2)令$-\frac{π}{2}+2kπ≤2ωx≤\frac{π}{2}+2kπx$,可求得f(x)的单调递增区间为$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}](k∈Z)$,依题意,$[-\frac{3π}{2},\frac{π}{2}]$⊆$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}]$,列式可解得ω∈(0,$\frac{1}{6}$],从而可得ω的最大值.

解答 解:(1)$f(x)=4(\frac{{\sqrt{3}}}{2}sinωx+\frac{1}{2}cosωx)sinωx+cos2ωx=\sqrt{3}sin2ωx+1∈[1-\sqrt{3},1+\sqrt{3}]$;
(2)令$-\frac{π}{2}+2kπ≤2ωx≤\frac{π}{2}+2kπ⇒\frac{kπ}{ω}-\frac{π}{4ω}≤x≤\frac{kπ}{ω}+\frac{π}{4ω}$
则f(x)的单调递增区间为$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}](k∈Z)$,
故$[-\frac{3π}{2},\frac{π}{2}]$是$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}]$子区间,
故$\left\{\begin{array}{l}\frac{kπ}{ω}-\frac{π}{4ω}≤-\frac{3}{2}π\\ \frac{kπ}{ω}+\frac{π}{4ω}≥\frac{π}{2}\end{array}\right.⇒\left\{\begin{array}{l}k-\frac{1}{4}≤-\frac{3}{2}ω\\ k+\frac{1}{4}≥\frac{1}{2}ω\end{array}\right.⇒\left\{\begin{array}{l}ω≤\frac{1}{6}-\frac{2}{3}k\\ ω≤\frac{1}{2}+2k\end{array}\right.⇒0<ω≤\frac{1}{6}$,
故ω的最大值为$\frac{1}{6}$.

点评 本题考查三角函数的恒等变换应用,考查正弦函数的单调性与最值,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.汽车租赁业被称为“朝阳产业”,因为它具有无须办理保险、无须年检维修、车型可随意更换等优点,以租车代替买车来控制陈本,正慢慢受到国内企事业单位和个人用户的青睐,可以满足人民群众个性化出行、商务活动需求和保障重大社会活动.2013年国庆长假期间某汽车租赁公司为了调查P、Q两种车型的出租情况,现随机抽取了这两种车型各100辆,分别统计了每辆车某个星期内的出租天数,统计数据如表:
P型车
出租天数1234567
车辆数51030351532
Q型车
出租天数1234567
车辆数1420201615105
(1)根据一周内的统计数据,预测该公司一辆P型车,一辆Q型车一周内合计出租天数恰好为4天的概率;
(2)如果两种车型每辆车每天出租获得的利润相同,该公司需要从P、Q两种车型中购买一辆,请你给出建议应该购买哪一种车型,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x<a},B={x|1<x<2},且A∪B=A,则实数a的取值范围是(  )
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是定义在R上的奇函数,且对任意x∈R都有f(x+2)=f(2-x)+4f(2),且f(1)=3,则f(2015)=(  )
A.6B.3C.0D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙两人下棋,甲获胜的概率为0.3,甲乙和棋的概率为0.4,则甲不输的概率为0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x=2a,则命题:“?y∈(0,+∞),xy=1”的否定为(  )
A.?y∈(0,+∞),xy≠1B.?y∈(-∞,0),xy=1C.?y∈(0,+∞),xy≠1D.?y∈(-∞,0),xy=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)满足f(x-1)=x+1,则f(2016)=(  )
A.2019B.2018C.2017D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x3-2x2-x+2=0},下列哪个元素不属于集合A(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an},{bn}的前n项之和分别为Sn,Tn,若$\frac{{a}_{n}}{{b}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{S}_{21}}{{T}_{21}}$的值为(  )
A.$\frac{13}{15}$B.$\frac{23}{35}$C.$\frac{11}{17}$D.$\frac{4}{9}$

查看答案和解析>>

同步练习册答案