精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的单调递增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A.恒为正数
B.恒为负数
C.恒为0
D.可以为正数也可以为负数
A
根据函数性质得x≥0时,f(x)≥0.设等差数列{an}的公差为d,则f(a1)=f(a3-2d),f(a5)=f(a3+2d),所以f(a1)+f(a5)=f(2da3)-f(2da3),由于a3>0,所以2da3>2da3,所以f(2da3)-f(2da3)>0,所以f(a1)+f(a3)+f(a5)>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(I)证明:函数上单调递增;
(Ⅱ)求函数的零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+2)=-f(x);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图像关于y轴对称.下列结论中,正确的是(  )
A.f(4.5)<f(6.5)<f(7)
B.f(4.5)<f(7)<f(6.5)
C.f(7)<f(4.5)<f(6.5)
D.f(7)<f(6.5)<f(4.5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是(  )
A.(-∞,-1)∪(2,+∞)
B.(-1,2)
C.(-2,1)
D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某医药研究所开发一种新药,在试验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.
 
(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);
(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效,那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在实数集上的偶函数f(x)满足f(x+2)=f(x),且f(x)在[-3,-2]上单调递减,又α,β是锐角三角形的两内角,则f(sin α)与f(cos β)的大小关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x)在定义域[-2,2]上单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上是单调函数,且满足对任意,都有,则的值是 ( )
A.85B.82C.80D.76

查看答案和解析>>

同步练习册答案