精英家教网 > 高中数学 > 题目详情
8、对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,则||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.
其中真命题的个数为(  )
分析:首先分析题目任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|,
对于①若点C在线段AB上,设C点坐标为(x0,y0)然后代入验证显然|AC||+||CB||=||AB||成立.成立故正确.
对于②在△ABC中,若∠C=90o,则||AC||2+||CB||2=||AB||2;是几何距离而非题目定义的距离,明显不成立,
对于③在△ABC中,用坐标表示||AC||+||CB||然后根据绝对值不等式可得到大于||AB||.成立,故可得到答案.
解答:解:对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.
对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,
则||AC||+||CB||=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=||AB||.成立故正确.
对于②在△ABC中,若∠C=90o,则||AC||2+||CB||2=||AB||2;是几何距离而非题目定义的距离,明显不成立,
对于③在△ABC中,||AC||+||CB||=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|>|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=||AB||.
∴命题①③成立,
故答案选择C.
点评:此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=|x1-x2|+|y1-y2|.给出下列三个命题:
①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知θ∈[0,
π
3
]

(Ⅰ)试用θ表示
BC
的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||
其中真命题为
写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源:2010年福建省高二第二学期半期考试数学(理科)试题 题型:选择题

对于直角坐标平面内的任意两点A(x,y)、B(xy),定义它们之间的一种“距离”:

AB‖=︱xx︱+︱yy︱。给出下列三个命题:

①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;

②在△ABC中,若∠C=90°,则‖AC+‖CB=‖AB

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命题的个数为(    )

A.1个                           B.2个                    C.3个                 D.4个

 

查看答案和解析>>

同步练习册答案