精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),两个焦点分别为F1和F2,斜率为k的直线l过右焦点F2且与椭圆交于A、B两点,设l与y轴交点为P,线段PF2的中点恰为B.若|k|≤
2
5
5
,求椭圆C的离心率的取值范围.
分析:设椭圆离心率为e,设F2的坐标为(c,0),设l的方程为y=kx+m,则可求得l与y轴的交点,进而求得B点坐标,带椭圆方程求得e和k的关系式,进而根据k的范围得出关于e的不等式,求得e的范围.
解答:解:设椭圆离心率为e,设F2的坐标为(c,0),其中c2=a2-b2
设l的方程为y=kx+m,则l与y轴的交点为(0,m),m=-kc,
所以B点的坐标为(
c
2
,-
kc
2
),将B点坐标代入椭圆方程得
c2
a2
+
c2
b2
•k2=4,即e2+
k2
1
e2
-1
=4,
所以k2=(4-e2)•(
1
e2
-1)≤
4
5
,即5e4-29e2+20≤0,解之可得,
4
5
≤e2≤5,
又有椭圆的性质,所以
2
5
5
≤e<1,
因此椭圆C的离心率取值范围为[
2
5
5
,1).
点评:本题主要考查了椭圆的简单性质.解题的关键是充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案